Thursday, July 05, 2007

LF398 - Monolithic Sample and Hold Circuit

LF398 - Monolithic Sample and Hold Circuit
The LF198/LF298/LF398  are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 µs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of 1010Ohm allows high source impedances to be used without degrading accuracy.
P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 µF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Related Circuits and Projects

Electronic Product Design

Electronic Product Design
EDA, Analog, Digital, Mixed Signal. Power, RF, Instrumentation, Interface, T&M.

Blocks

80C51 Analog Analog-Design Analytical-Instrumentation Android Application-Notes-2 ASIC-Design ASIC-SOC-FPGA Bipolar-Transistors Capacitors Circuit-Archive Circuit-Design Circuit-Design-2 Communications Communications-Chips Component-Testing Computer-IC-Module Computer-Interfacing Control-Systems Design-Service Design-Service-2 Design-Service-3 Digital Discrete-Semiconductors DSP EDA EDA-2 EDA-3 EDA-4 EDA-5 Educational Educational-2 Electrical Electromechanical Embedded Embedded-2 Embedded-Applications Embedded-Systems-Tools Energy-Power Engineering-Services Engineering-Services-2 Engineering-Services-3 ESD-EMI-RFI Firmware Home-Automation Industrial-Automation IoT-WSN-M2M LED-Lighting Magazines Manufacturing-Services Materials-Nanotech Mechanical-3D-CAD Mechatronics Medical-Electronics MEMS Microcontroller Microelectronics Mixed Mixed-Semiconductor Mixed-Signal-Design Opamps Open-Hardware Optoelectronics Organizations-Associations Passive-Components PCB-Layout Photonics-Optics PIC Power-Devices Power-Electronics Power-Electronics-Design Process-Control Process-Control-2 Product-Safety Product-System-Design Projects Quality Reference Research-Institutes RF-Components RF-Design RF-Engineering-Services RF-Microwave RF-Semiconductor RF-Wireless-Networking Robotics Scientific-Software Semiconductors Sensors SMPS-Power-Supply Software-Code Spice-Simulation Standards Standards-2 Tech-Docs Tech-Media Technical-Computing Test-Measurement TM-Applications Training-Consulting Virtual-Instrumentation

Search This Blog